Joint Time-Frequency and FDTD Analysis of Precursor Fields in Dispersive Media

نویسندگان

  • Reza Safian
  • Costas D. Sarris
  • Mohammad Mojahedi
  • Edward S. Rogers
چکیده

Superluminal group velocities, defined as group velocities exceeding the speed of light in vacuum, c, have been theoretically predicted and experimentally observed in various types of dispersive media, such as passive and active Lorentzian media, one-dimensional photonic crystals, and undersized waveguides. Though the group velocity was found to be superluminal in these media, it has been suggested that the pulse “front” and associated transient field oscillations, known as the precursors or forerunners, will never travel faster than c, and hence relativistic causality is always preserved. Until now, few rigorous studies of these transient fields in structures exhibiting superluminal group velocities has been performed. In this paper, we present the dynamic evolution of these earliest field oscillations in one dimensional photonic crystals (1DPC), using finite-difference time-domain (FDTD) techniques in conjunction with joint time-frequency analysis (JTFA). Our study clearly shows that the precursor fields associated with superluminal pulse propagation travel at subluminal speeds, and thus, the arrival of these precursor fields must be associated with the arrival of “genuine information”. Our study demonstrates the expected result that abnormal group velocities do not contradict Einstein causality. More surprisingly, and in contrast to previously held beliefs, we also show that the speed of the “front” is less than, and not equal to c. This work also shows that FDTD analysis and JTFA can be combined to study the dynamic evolution of the transient and steady state pulse propagation in dispersive media.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DEVELOPMENT OF AN FDTD TOOL FOR MODELING OF DISPERSIVE MEDIA Part I. Material parameters and updating equations for fields

The implementation of the Debye, narrowband Lorentzian, and wideband Lorentzian dielectric and magnetic media in the numerical tool EZ-FDTD developed at the University of Missouri-Rolla (UMR is described. This tool allows efficient and robust full-wave finite-difference time-domain modeling of different complex electromagnetic structures. Algorithms for dispersive media use the linear recursive...

متن کامل

An FDTD Formulation for Wave Propagation in Biological Dispersive Media

A Finite Difference Time Domain (FDTD) scheme used to model the wave propagation in biological dispersive media has been proposed in this paper. FDTD scheme based on the direct solution of time domain Maxwell’s equations has developed and these solutions were approximated by time based linear functions. We are applied FDTD scheme for different dispersive media models such as Cole-Cole, Cole-Dav...

متن کامل

Analysis of 3-dimensional Electromagnetic Fields in Dispersive Media Using Cuda

This research presents the implementation of the FiniteDifference Time-Domain (FDTD) method for the solution of 3dimensional electromagnetic problems in dispersive media using Graphics Processor Units (GPUs). By using the newly introduced CUDA technology, we illustrate the efficacy of GPUs in accelerating the FDTD computations by achieving appreciable speedup factors with great ease and at no e...

متن کامل

An Efficient and Accurate Method to Solve Low Frequency and Non-Conformal Problems Using Finite Difference Time Domain (FDTD)

In this article we present νFDTD (New FDTD), an efficient and accurate method for solving low frequency problems and with those non-conformal geometries by using the Finite Difference Time Domain (FDTD) method. The conventional time domain technique FDTD demands extensive computational resources when solving low frequency problems, or when dealing with dispersive media. The νFDTD technique is a...

متن کامل

A Unified Fdtd Approach for Electromag- Netic Analysis of Dispersive Objects

In order to obtain a unified approach for the FiniteDifference Time-Domain (FDTD) analysis of dispersive media described by a variety of models, the coordinate stretched Maxwell’s curl equation in time domain is firstly deduced. Then the FDTD update formulas combined with the semi-analytical recursive convolution (SARC) in Digital Signal Process (DSP) technique for general dispersive media are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005